agg_math.h 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
//----------------------------------------------------------------------------
// Anti-Grain Geometry (AGG) - Version 2.5
// A high quality rendering engine for C++
// Copyright (C) 2002-2006 Maxim Shemanarev
// Contact: mcseem@antigrain.com
//          mcseemagg@yahoo.com
//          http://antigrain.com
// 
// AGG is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// 
// AGG is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// 
// You should have received a copy of the GNU General Public License
// along with AGG; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, 
// MA 02110-1301, USA.
//----------------------------------------------------------------------------
// Bessel function (besj) was adapted for use in AGG library by Andy Wilk 
// Contact: castor.vulgaris@gmail.com
//----------------------------------------------------------------------------

#ifndef AGG_MATH_INCLUDED
#define AGG_MATH_INCLUDED

#include <math.h>
#include "agg_basics.h"

namespace agg
{

    //------------------------------------------------------vertex_dist_epsilon
    // Coinciding points maximal distance (Epsilon)
    const double vertex_dist_epsilon = 1e-14;

    //-----------------------------------------------------intersection_epsilon
    // See calc_intersection
    const double intersection_epsilon = 1.0e-30;

    //------------------------------------------------------------cross_product
    AGG_INLINE double cross_product(double x1, double y1, 
                                    double x2, double y2, 
                                    double x,  double y)
    {
        return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1);
    }

    //--------------------------------------------------------point_in_triangle
    AGG_INLINE bool point_in_triangle(double x1, double y1, 
                                      double x2, double y2, 
                                      double x3, double y3, 
                                      double x,  double y)
    {
        bool cp1 = cross_product(x1, y1, x2, y2, x, y) < 0.0;
        bool cp2 = cross_product(x2, y2, x3, y3, x, y) < 0.0;
        bool cp3 = cross_product(x3, y3, x1, y1, x, y) < 0.0;
        return cp1 == cp2 && cp2 == cp3 && cp3 == cp1;
    }

    //-----------------------------------------------------------calc_distance
    AGG_INLINE double calc_distance(double x1, double y1, double x2, double y2)
    {
        double dx = x2-x1;
        double dy = y2-y1;
        return sqrt(dx * dx + dy * dy);
    }

    //--------------------------------------------------------calc_sq_distance
    AGG_INLINE double calc_sq_distance(double x1, double y1, double x2, double y2)
    {
        double dx = x2-x1;
        double dy = y2-y1;
        return dx * dx + dy * dy;
    }

    //------------------------------------------------calc_line_point_distance
    AGG_INLINE double calc_line_point_distance(double x1, double y1, 
                                               double x2, double y2, 
                                               double x,  double y)
    {
        double dx = x2-x1;
        double dy = y2-y1;
        double d = sqrt(dx * dx + dy * dy);
        if(d < vertex_dist_epsilon)
        {
            return calc_distance(x1, y1, x, y);
        }
        return ((x - x2) * dy - (y - y2) * dx) / d;
    }

    //-------------------------------------------------------calc_line_point_u
    AGG_INLINE double calc_segment_point_u(double x1, double y1, 
                                           double x2, double y2, 
                                           double x,  double y)
    {
        double dx = x2 - x1;
        double dy = y2 - y1;

        if(dx == 0 && dy == 0)
        {
	        return 0;
        }

        double pdx = x - x1;
        double pdy = y - y1;

        return (pdx * dx + pdy * dy) / (dx * dx + dy * dy);
    }

    //---------------------------------------------calc_line_point_sq_distance
    AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1, 
                                                     double x2, double y2, 
                                                     double x,  double y,
                                                     double u)
    {
        if(u <= 0)
        {
	        return calc_sq_distance(x, y, x1, y1);
        }
        else 
        if(u >= 1)
        {
	        return calc_sq_distance(x, y, x2, y2);
        }
        return calc_sq_distance(x, y, x1 + u * (x2 - x1), y1 + u * (y2 - y1));
    }

    //---------------------------------------------calc_line_point_sq_distance
    AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1, 
                                                     double x2, double y2, 
                                                     double x,  double y)
    {
        return 
            calc_segment_point_sq_distance(
                x1, y1, x2, y2, x, y,
                calc_segment_point_u(x1, y1, x2, y2, x, y));
    }

    //-------------------------------------------------------calc_intersection
    AGG_INLINE bool calc_intersection(double ax, double ay, double bx, double by,
                                      double cx, double cy, double dx, double dy,
                                      double* x, double* y)
    {
        double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy);
        double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx);
        if(fabs(den) < intersection_epsilon) return false;
        double r = num / den;
        *x = ax + r * (bx-ax);
        *y = ay + r * (by-ay);
        return true;
    }

    //-----------------------------------------------------intersection_exists
    AGG_INLINE bool intersection_exists(double x1, double y1, double x2, double y2,
                                        double x3, double y3, double x4, double y4)
    {
        // It's less expensive but you can't control the 
        // boundary conditions: Less or LessEqual
        double dx1 = x2 - x1;
        double dy1 = y2 - y1;
        double dx2 = x4 - x3;
        double dy2 = y4 - y3;
        return ((x3 - x2) * dy1 - (y3 - y2) * dx1 < 0.0) != 
               ((x4 - x2) * dy1 - (y4 - y2) * dx1 < 0.0) &&
               ((x1 - x4) * dy2 - (y1 - y4) * dx2 < 0.0) !=
               ((x2 - x4) * dy2 - (y2 - y4) * dx2 < 0.0);

        // It's is more expensive but more flexible 
        // in terms of boundary conditions.
        //--------------------
        //double den  = (x2-x1) * (y4-y3) - (y2-y1) * (x4-x3);
        //if(fabs(den) < intersection_epsilon) return false;
        //double nom1 = (x4-x3) * (y1-y3) - (y4-y3) * (x1-x3);
        //double nom2 = (x2-x1) * (y1-y3) - (y2-y1) * (x1-x3);
        //double ua = nom1 / den;
        //double ub = nom2 / den;
        //return ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0;
    }

    //--------------------------------------------------------calc_orthogonal
    AGG_INLINE void calc_orthogonal(double thickness,
                                    double x1, double y1,
                                    double x2, double y2,
                                    double* x, double* y)
    {
        double dx = x2 - x1;
        double dy = y2 - y1;
        double d = sqrt(dx*dx + dy*dy); 
        *x =  thickness * dy / d;
        *y = -thickness * dx / d;
    }

    //--------------------------------------------------------dilate_triangle
    AGG_INLINE void dilate_triangle(double x1, double y1,
                                    double x2, double y2,
                                    double x3, double y3,
                                    double *x, double* y,
                                    double d)
    {
        double dx1=0.0;
        double dy1=0.0; 
        double dx2=0.0;
        double dy2=0.0; 
        double dx3=0.0;
        double dy3=0.0; 
        double loc = cross_product(x1, y1, x2, y2, x3, y3);
        if(fabs(loc) > intersection_epsilon)
        {
            if(cross_product(x1, y1, x2, y2, x3, y3) > 0.0) 
            {
                d = -d;
            }
            calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1);
            calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2);
            calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3);
        }
        *x++ = x1 + dx1;  *y++ = y1 + dy1;
        *x++ = x2 + dx1;  *y++ = y2 + dy1;
        *x++ = x2 + dx2;  *y++ = y2 + dy2;
        *x++ = x3 + dx2;  *y++ = y3 + dy2;
        *x++ = x3 + dx3;  *y++ = y3 + dy3;
        *x++ = x1 + dx3;  *y++ = y1 + dy3;
    }

    //------------------------------------------------------calc_triangle_area
    AGG_INLINE double calc_triangle_area(double x1, double y1,
                                         double x2, double y2,
                                         double x3, double y3)
    {
        return (x1*y2 - x2*y1 + x2*y3 - x3*y2 + x3*y1 - x1*y3) * 0.5;
    }

    //-------------------------------------------------------calc_polygon_area
    template<class Storage> double calc_polygon_area(const Storage& st)
    {
        unsigned i;
        double sum = 0.0;
        double x  = st[0].x;
        double y  = st[0].y;
        double xs = x;
        double ys = y;

        for(i = 1; i < st.size(); i++)
        {
            const typename Storage::value_type& v = st[i];
            sum += x * v.y - y * v.x;
            x = v.x;
            y = v.y;
        }
        return (sum + x * ys - y * xs) * 0.5;
    }

    //------------------------------------------------------------------------
    // Tables for fast sqrt
    extern int16u g_sqrt_table[1024];
    extern int8   g_elder_bit_table[256];


    //---------------------------------------------------------------fast_sqrt
    //Fast integer Sqrt - really fast: no cycles, divisions or multiplications
    #if defined(_MSC_VER)
    #pragma warning(push)
    #pragma warning(disable : 4035) //Disable warning "no return value"
    #endif
    AGG_INLINE unsigned fast_sqrt(unsigned val)
    {
    #if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM)
        //For Ix86 family processors this assembler code is used. 
        //The key command here is bsr - determination the number of the most 
        //significant bit of the value. For other processors
        //(and maybe compilers) the pure C "#else" section is used.
        __asm
        {
            mov ebx, val
            mov edx, 11
            bsr ecx, ebx
            sub ecx, 9
            jle less_than_9_bits
            shr ecx, 1
            adc ecx, 0
            sub edx, ecx
            shl ecx, 1
            shr ebx, cl
    less_than_9_bits:
            xor eax, eax
            mov  ax, g_sqrt_table[ebx*2]
            mov ecx, edx
            shr eax, cl
        }
    #else

        //This code is actually pure C and portable to most 
        //arcitectures including 64bit ones. 
        unsigned t = val;
        int bit=0;
        unsigned shift = 11;

        //The following piece of code is just an emulation of the
        //Ix86 assembler command "bsr" (see above). However on old
        //Intels (like Intel MMX 233MHz) this code is about twice 
        //faster (sic!) then just one "bsr". On PIII and PIV the
        //bsr is optimized quite well.
        bit = t >> 24;
        if(bit)
        {
            bit = g_elder_bit_table[bit] + 24;
        }
        else
        {
            bit = (t >> 16) & 0xFF;
            if(bit)
            {
                bit = g_elder_bit_table[bit] + 16;
            }
            else
            {
                bit = (t >> 8) & 0xFF;
                if(bit)
                {
                    bit = g_elder_bit_table[bit] + 8;
                }
                else
                {
                    bit = g_elder_bit_table[t];
                }
            }
        }

        //This code calculates the sqrt.
        bit -= 9;
        if(bit > 0)
        {
            bit = (bit >> 1) + (bit & 1);
            shift -= bit;
            val >>= (bit << 1);
        }
        return g_sqrt_table[val] >> shift;
    #endif
    }
    #if defined(_MSC_VER)
    #pragma warning(pop)
    #endif




    //--------------------------------------------------------------------besj
    // Function BESJ calculates Bessel function of first kind of order n
    // Arguments:
    //     n - an integer (>=0), the order
    //     x - value at which the Bessel function is required
    //--------------------
    // C++ Mathematical Library
    // Convereted from equivalent FORTRAN library
    // Converetd by Gareth Walker for use by course 392 computational project
    // All functions tested and yield the same results as the corresponding
    // FORTRAN versions.
    //
    // If you have any problems using these functions please report them to
    // M.Muldoon@UMIST.ac.uk
    //
    // Documentation available on the web
    // http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html
    // Version 1.0   8/98
    // 29 October, 1999
    //--------------------
    // Adapted for use in AGG library by Andy Wilk (castor.vulgaris@gmail.com)
    //------------------------------------------------------------------------
    inline double besj(double x, int n)
    {
        if(n < 0)
        {
            return 0;
        }
        double d = 1E-6;
        double b = 0;
        if(fabs(x) <= d) 
        {
            if(n != 0) return 0;
            return 1;
        }
        double b1 = 0; // b1 is the value from the previous iteration
        // Set up a starting order for recurrence
        int m1 = (int)fabs(x) + 6;
        if(fabs(x) > 5) 
        {
            m1 = (int)(fabs(1.4 * x + 60 / x));
        }
        int m2 = (int)(n + 2 + fabs(x) / 4);
        if (m1 > m2) 
        {
            m2 = m1;
        }
    
        // Apply recurrence down from curent max order
        for(;;) 
        {
            double c3 = 0;
            double c2 = 1E-30;
            double c4 = 0;
            int m8 = 1;
            if (m2 / 2 * 2 == m2) 
            {
                m8 = -1;
            }
            int imax = m2 - 2;
            for (int i = 1; i <= imax; i++) 
            {
                double c6 = 2 * (m2 - i) * c2 / x - c3;
                c3 = c2;
                c2 = c6;
                if(m2 - i - 1 == n)
                {
                    b = c6;
                }
                m8 = -1 * m8;
                if (m8 > 0)
                {
                    c4 = c4 + 2 * c6;
                }
            }
            double c6 = 2 * c2 / x - c3;
            if(n == 0)
            {
                b = c6;
            }
            c4 += c6;
            b /= c4;
            if(fabs(b - b1) < d)
            {
                return b;
            }
            b1 = b;
            m2 += 3;
        }
    }

}


#endif